新笔趣阁 > 现实 > 文学艺术 > 数学大帝 > 第三百九十二章 谢尔宾斯基正规数 (2 / 2)

第三百九十二章 谢尔宾斯基正规数 (2 / 2)

        巴纳赫维奇要求谢尔宾斯基打个比方,谢尔宾斯基直接从自己的口袋里掏出了自己随身用的笔和一个小草稿本子。开始站在那里写起了数字。

        巴纳赫维奇很佩服谢尔宾斯基随身携带纸币的习惯,也钦佩他那种站着也能写好字的能力。只要左手端着小本,右手直接写字就行。

        谢尔宾斯基在本上列出了一下几个情况。

        钱珀瑙恩数():

        0.1234567891011121314151617...

        是从连结所有自然数的数字而得出的数,它以10为底正规,但在某些底不是正规。

        科普兰—艾狄胥常数(d-Erd?s):

        0.235711131719232931374143...

        从连结所有质数的数字而得出的数,也是以10为底正规。

        0.1010010001000010000010000001...

        有理数在任何底都不是正规,因为它们的数字序列最终会循环出现。瓦茨瓦夫·谢尔品斯基在1917年给出第一个明确构造的一个正规数。韦罗妮卡·比彻()和桑蒂亚戈·菲盖拉()构造一个可计算正规数;蔡廷常数()Ω给出一个不可计算的正规数例子。

        要证明一个不是明确构造为正规数的数的正规性非常困难。例如2的平方根、圆周率π(它的二进制表达已被证明为正规数)、2的自然对数ln2和e是否正规仍不知道。(但基于实验证据,猜想它们很可能是正规数。)证明仍遥不可及:就连哪些数字在这些常数的10进表示法无穷次出现仍不知道。大卫·贝利()和理查德·克兰德尔()在2001年猜想每个无理代数数是正规的,虽没有找到反例,却还没有一个这样的数被证明在每个底都是正规的。

        【本章阅读完毕,更多请搜索新笔趣阁;https://www.xinbiquge.cc 阅读更多精彩小说】